Forum Discussion

SJ-Chris's avatar
SJ-Chris
Explorer II
Mar 13, 2022

MPPT solar charge controller with 12v panels...

I wanted to share an MPPT observation/experience (some of you likely are already aware, but many others maybe not...)

I just completed my 3rd solar install on my 3rd RV. (I enjoy these projects, and have been becoming a bit of a solar nerd...and mostly I hate dead batteries!) These are fairly simply installs (the first 2 were 500w with a 2000w inverter on one and a 1000w inverter on the other). They used commercial 250w used panels ($35 each) and an MPPT controller. Doing great for the last year (https://www.rv.net/forum/index.cfm/fuseaction/thread/tid/30217540/srt/pa/pging/1/page/1.cfm)

For this latest project, my 23' Class C RV has just two new 6v GC batteries (210AH) which is all I really want/need in there. A while back I acquired via craigslist three 100w used 12v panels (tested prior to purchase) for $25 each. I had a cheap PWM charge controller I was thinking of using. But I decided instead to buy a MPPT controller to use. I'm glad that I did. Even though the solar panels are "12v", they actually produce at 18-21v as you are probably aware. So the MPPT charge controller actually converts that extra voltage into extra charging current.

This system is 300w flat mounted on the roof. After I completed my install, I did a test. I discharged my batteries to about 50% and then I turned on my solar (toggle fuse) yesterday morning. I can see on the charge controller display, for example, that the panels were at 18.5v and the current coming in from the 300w of panels was 9.5amps at 11am. The display then shows the voltage going out to the batteries (ie. 14v) and the amps going to the batteries at 12amps. (Note: Those numbers might be off by just a bit, I'm trying to illustrate a general point.) That translates to roughly 25% MORE charging to the batteries than if I was using a PWM controller.

So I guess that means my 300w MPPT system is actually equivalent to a 375w PWM system had I gone that route.

Just something to think about if you are installing "12v" panels.

(Side note: I actually bought a 4th 100w 12v panel at that time, and I used the cheap PWM controller and 25' of wire and a fuse as a portable system. Currently used to keep my boat batteries charged during storage but in theory could come with me on an extended boondocking trip if I ever thought I needed an extra 100w of portable solar. Handy to have :) )

Happy Camping!
Chris

Two 2015 Thor Majestic 28a Class C RVs
One 2013 Coachman Leprechaun 210QB Class C RV
  • Subtract MPPT efficiency losses of about 5-10% for MPPT wiring and controller.

    For parallel 12V panels with PWM use Isc with no panel to controller wiring loss as the panels are about 18V output. HOWEVER panel amps rise with panel temperature hence at noonish and say 140F panel temperature PWM has a advantage. Vmp decreases with panel temperature. The panel temperature compensation for voltage loss is greater than that for amps gain.

    Point being that with all of the variables it's involved to compare various configurations with the same equipment.
  • From what I've read panel voltage increases from 0V at night to panel voltage at extremely low light. So low that it's way below the lowewest panel IR curve. Therefor I'm of the opion that for practical purposes panel output is either 0V or normal voltage in early morning or late evening. ie Practically you either have usable power or not regardless of parallel vs serial.

    Anyone have any documents etc on this subject?
  • From this link Click the cell voltage jumps to 0.5V at 1 W per meter square and a cell area is much smaller than a meter squared.

    To me in practical terms cell voltage is either 0V or 0.5V.
  • That's great info. One of these days I'd like to upgrade to an MPPT. Then at the same time put in a shunt and a battery monitor. I enjoy solar projects too.

About DIY Maintenance

RV projects you can tackle on your own with a few friendly pointers.4,351 PostsLatest Activity: Jan 13, 2025