Forum Discussion
NinerBikes
Jul 08, 2015Explorer
From Trojan Website.
Trojan FAQ
1. How does temperature affect the performance of my batteries?
At higher temperatures (above 80º F (27º C)) battery capacity generally increases, usually at the cost of battery life. Higher temperatures also increase the self-discharge characteristic. Colder temperatures (below 80º F (27º C)) will lower battery capacity and prolong battery life. Cooler temperatures will slow self-discharge. Therefore, operating batteries at temperatures at or slightly below 80º F (27º C) will optimize both performance and life.
2. How do I determine my battery capacity when it is colder/hotter?
Battery capacity is basically a linear relationship. A good rule of thumb is that for every 15º F (9º C) above 80º F (27º C), capacity is increased by 10% and for every 15º F (9º C) below 80º F (27º C), capacity is reduced by 10%.
3. How do I account for temperature when taking my gravity readings?
Temperature will affect specific gravity readings. As temperature increases, the electrolyte solution expands and as temperature decreases the electrolyte solution contracts. As a result, it is a good practice to temperature correct specific gravity readings. Here are the relationships Trojan recommends using: Every ten degrees above 80º F (27º C) add 4 points to the hydrometer reading.
Example: @ 90º F (32º C) the hydrometer reads: 1.250 the actual reading: 1.250 + .003 = 1.253.
For every ten degrees below 80º F (27º C) subtract 4 points from the hydrometer reading.
Example: @ 70º F (21º C) the hydrometer reads: 1.250 the actual reading: 1.250 – .003 = 1.247.
4. How much should I compensate the charge voltage for temperature?
Temperature will affect voltage readings. As temperature increases, voltage decreases. Conversely, as temperature decreases, voltage increases. Here are the relationships:
Trojan recommends using the following: For every 1º F below 77º F add 0.0028 volts per cell or for every 1 C below 25º C add 0.005 volts per cell to the charger voltage setting.
1: A 12 volt battery @ 70º F. The recommended charging voltage at 77º F is 14.8 volts. The adjusted charging voltage is 14.8 + (6 cells * 7 degrees below * 0.0028) = 14.92 volts.
2: A 12 volt battery @ 21º C. The recommended charging voltage at 25º C is 14.8 volts. The adjusted charging voltage is 14.8 + (6 cells * 4 degrees below * 0.005) = 14.92 volts.
For every 1º F above 77º F subtract 0.0028 volts per cell or for every 1º C above 25º C subtract 0.005 volts per cell to the charger voltage setting.
1: A 12 volt battery @ 85º F. The recommended charger voltage at 77º F is 14.8 volts. The adjusted charging voltage is 14.8 – (6 cells * 8 degrees above * 0.0028) = 14.67 volts.
2: A 12 volt battery @ 29.5º C. The recommended charger voltage at 25º C is 14.8 volts. The adjusted charging voltage is 14.8 – (6 cells * 4.5 degrees above * 0.005) = 14.67 volts.
Trojan FAQ
1. How does temperature affect the performance of my batteries?
At higher temperatures (above 80º F (27º C)) battery capacity generally increases, usually at the cost of battery life. Higher temperatures also increase the self-discharge characteristic. Colder temperatures (below 80º F (27º C)) will lower battery capacity and prolong battery life. Cooler temperatures will slow self-discharge. Therefore, operating batteries at temperatures at or slightly below 80º F (27º C) will optimize both performance and life.
2. How do I determine my battery capacity when it is colder/hotter?
Battery capacity is basically a linear relationship. A good rule of thumb is that for every 15º F (9º C) above 80º F (27º C), capacity is increased by 10% and for every 15º F (9º C) below 80º F (27º C), capacity is reduced by 10%.
3. How do I account for temperature when taking my gravity readings?
Temperature will affect specific gravity readings. As temperature increases, the electrolyte solution expands and as temperature decreases the electrolyte solution contracts. As a result, it is a good practice to temperature correct specific gravity readings. Here are the relationships Trojan recommends using: Every ten degrees above 80º F (27º C) add 4 points to the hydrometer reading.
Example: @ 90º F (32º C) the hydrometer reads: 1.250 the actual reading: 1.250 + .003 = 1.253.
For every ten degrees below 80º F (27º C) subtract 4 points from the hydrometer reading.
Example: @ 70º F (21º C) the hydrometer reads: 1.250 the actual reading: 1.250 – .003 = 1.247.
4. How much should I compensate the charge voltage for temperature?
Temperature will affect voltage readings. As temperature increases, voltage decreases. Conversely, as temperature decreases, voltage increases. Here are the relationships:
Trojan recommends using the following: For every 1º F below 77º F add 0.0028 volts per cell or for every 1 C below 25º C add 0.005 volts per cell to the charger voltage setting.
1: A 12 volt battery @ 70º F. The recommended charging voltage at 77º F is 14.8 volts. The adjusted charging voltage is 14.8 + (6 cells * 7 degrees below * 0.0028) = 14.92 volts.
2: A 12 volt battery @ 21º C. The recommended charging voltage at 25º C is 14.8 volts. The adjusted charging voltage is 14.8 + (6 cells * 4 degrees below * 0.005) = 14.92 volts.
For every 1º F above 77º F subtract 0.0028 volts per cell or for every 1º C above 25º C subtract 0.005 volts per cell to the charger voltage setting.
1: A 12 volt battery @ 85º F. The recommended charger voltage at 77º F is 14.8 volts. The adjusted charging voltage is 14.8 – (6 cells * 8 degrees above * 0.0028) = 14.67 volts.
2: A 12 volt battery @ 29.5º C. The recommended charger voltage at 25º C is 14.8 volts. The adjusted charging voltage is 14.8 – (6 cells * 4.5 degrees above * 0.005) = 14.67 volts.
About Technical Issues
Having RV issues? Connect with others who have been in your shoes.24,247 PostsLatest Activity: May 14, 2025