Here's one explanation although I doubt it will matter much for our normal uses.
Here's a long discussion with a lot of links.
http://forum.allaboutcircuits.com/threads/stranded-vs-single-conductor-resistance.55795/http://www.rowand.net/Shop/Tech/WireCapacityChart.htmStranded vs. Solid Wire
This one is a bit of a mind-boggler, but it's important. When electricity flows through a wire, it mostly flows on the surface of the wire, not through the middle. This effect is more pronounced on high frequency AC than it is on DC or low frequency AC. This means that a "wire" of a given size that made up of many smaller strands can carry more power than a solid wire - simply because the stranded wire has more surface area. This is one reason why battery cables in your car and welding cables are made up of many very fine strands of smaller wire - it allows them to safely carry more power with less of that power being dissipated as heat. However, this "skin" effect is not as pronounced in a typical 12V DC automotive application, and the wire and cable used there is stranded for flexibility reasons.
When looking at a chart or description of wire capacity, take note of whether it is referring to stranded or solid wire - some charts may not specify but instead assume a default based on the typical wiring used in a given application. For example, almost all automotive wiring is stranded while almost all home wiring is solid. For most applications, flexibility or the lack thereof will be more important, but for very high frequency AC applications, stranded wire might be a requirement.