โMar-13-2022 03:15 PM
โMar-21-2022 07:07 AM
โMar-18-2022 09:27 AM
โMar-18-2022 09:03 AM
โMar-18-2022 08:43 AM
โMar-18-2022 07:12 AM
SJ-Chris wrote:
I'm not sure you can draw any series vs parallel conclusions from your two systems that are using different panels and perhaps different wiring (or distances) and perhaps different solar charge controllers. Too many variables?
On a separate (related?) note....I solve most of these "inefficient panels", "Series vs Parallel", "MPPT vs PWM", "wire sizing", "tilt vs no-tilt", etc issues with ONE SIMPLE FIX: Just put up 50% or 100% more panels than you actually need and you will be fine! (...and since I like to use very inexpensive used panels (tested) the panels are next to nothing when factoring the expense of everything else and my time to do the install). On my 500w installs, I really only wanted/needed 200-250w but I found 250w used panels for $35 each so I put up two (500w) for each of those solar installs. I think this is a easy solution for most weekend warriors who boondock less than 15 days per year. For those serious (or full-time) boondockers witih serious power needs, yes they want to be more accurate.
Happy Camping!
Chris
โMar-17-2022 11:31 PM
StirCrazy wrote:
no thats not it, it averages about 2amps higher output through out the day also. so if we have a nice sunny day I get the extra say 3AH for the extra time morning and night, then I get an extra 8 to 18AH for the rest of the day depending on the time of year.
Steve
StirCrazy wrote:
now I don't know if I switched my curent 12V panels on my 5th wheel to series if it would get that same efficiency , I think part of it has to do with the split cell panel on the camper and it also has a higher effecniency rating, and the ones on the 5th wheel are you basic 12V go power panels, so probably over priced garbage.. Ill see up to 23amp going to my battery in the peak hours of the day with the 24V panel, but the 5th wheel with 30somthing percent more panel wattage at best does 21amps...... but mostly 20.
Steve
โMar-17-2022 02:16 PM
CA Traveler wrote:StirCrazy wrote:My apologizes as I've seen that also. I should have stated that the irridation is very low including amps in the early morning and hence the power output is small but it does contribute.
I have seen several tests and such on the benifits of serial over paralell. there actualy will be a difference in morning votage between the two even if using 24V panels. my controler can take 140V in so that would let me stack three 24V panels and still be save. 4 and I am asking for trouble. but lets say I have three and early morning they are putting out 6V each, that adds up to 18V which is over the threshhole to start charging. if I had three paralell then it would only be 6V and wouldn't get a charge untill the sun came up more. not sure if thats what you were getting at but thats how I read it so I apoligize if I misunderstood what you were trying to say.
Steve
I've never seen 6V on a 30V panel. It has to happen of course since it's 0V at night. I've seen 90V (3 panels) at very low amps in the early morning light and no sun.
I've seen charging at 20V and 30V for 2 and 3 of the 9 panel sections w/o sun due to a tree and the bypass diodes activated for the other sections. I might have a graph of that event.
โMar-17-2022 02:12 PM
SJ-Chris wrote:StirCrazy wrote:SJ-Chris wrote:
That is a good question. Strangely, I didn't even think about connecting them in series. I connected them in parallel. I can appreciate how in series they would collectively get to say 14v+ earlier in the day and stay at 14v+ later in the evening. That would generate a little extra charging. Does anyone have any real life data on how much/little gain this ends up being in the real world? Would be interesting to know. Since all the panels are connected on the roof it wouldn't be terribly hard to re-wire them in series.
I guess the gain comes from the time between when the individual panels are producing ~5v to the time they are producing ~14v (and the reverse as the sun goes down). I'm curious....is this ~10 minutes in the morning and ~10 minutes in the evening? 20 minutes on each end?? Anyone know?
I suppose when I go boondocking next if I'm up before the sun I can keep an eye on my solar charge controller and measure the time...
PS: Solar is addictive.
Happy camping!
Chris
don't have any real numbers only observation. my 5th wheel has 480 watts of 12v panels on a PWM controler and my camper has a 325 watt 24V split cell panel on a MPPT controler. the overall output total per day is more from the 325 watt set up. for morning my camper will start charging at 7 am with about 0.5 amps where the 5th wheel wont put that out till about 8 to 8:30 up here. so at least 1 to 2 AH more just from reaching that higher voltage sooner
So maybe 1-2 extra AH in the morning and 1-2 extra AH in the evening.
2-4AH extra per day.
On a sunny day, your 325w system likely has the ability (batteries permitting) to generate ~100AH of charge to the batteries. So 2-4 extra AH would be about 2-4% more overall charge series vs parallel. Certainly it's not a bad thing, but for me it's not worth getting up on the roof and rewiring to series for just 2-4%. If I was doing it from scratch, yes I would probably do them in series next time.
Happy Camping!
Chris
โMar-16-2022 12:12 PM
StirCrazy wrote:My apologizes as I've seen that also. I should have stated that the irridation is very low including amps in the early morning and hence the power output is small but it does contribute.
I have seen several tests and such on the benifits of serial over paralell. there actualy will be a difference in morning votage between the two even if using 24V panels. my controler can take 140V in so that would let me stack three 24V panels and still be save. 4 and I am asking for trouble. but lets say I have three and early morning they are putting out 6V each, that adds up to 18V which is over the threshhole to start charging. if I had three paralell then it would only be 6V and wouldn't get a charge untill the sun came up more. not sure if thats what you were getting at but thats how I read it so I apoligize if I misunderstood what you were trying to say.
Steve
โMar-16-2022 12:01 AM
StirCrazy wrote:SJ-Chris wrote:
That is a good question. Strangely, I didn't even think about connecting them in series. I connected them in parallel. I can appreciate how in series they would collectively get to say 14v+ earlier in the day and stay at 14v+ later in the evening. That would generate a little extra charging. Does anyone have any real life data on how much/little gain this ends up being in the real world? Would be interesting to know. Since all the panels are connected on the roof it wouldn't be terribly hard to re-wire them in series.
I guess the gain comes from the time between when the individual panels are producing ~5v to the time they are producing ~14v (and the reverse as the sun goes down). I'm curious....is this ~10 minutes in the morning and ~10 minutes in the evening? 20 minutes on each end?? Anyone know?
I suppose when I go boondocking next if I'm up before the sun I can keep an eye on my solar charge controller and measure the time...
PS: Solar is addictive.
Happy camping!
Chris
don't have any real numbers only observation. my 5th wheel has 480 watts of 12v panels on a PWM controler and my camper has a 325 watt 24V split cell panel on a MPPT controler. the overall output total per day is more from the 325 watt set up. for morning my camper will start charging at 7 am with about 0.5 amps where the 5th wheel wont put that out till about 8 to 8:30 up here. so at least 1 to 2 AH more just from reaching that higher voltage sooner
โMar-15-2022 05:53 PM
CA Traveler wrote:
Serial vs Parallel Thoughts
Using 2x24V panels for 12V charging yields the exact same power input to the controller so I would not expect any difference based on the panels, ie the voltage is not less in the early morning. So twice the voltage or twice the amps. Wiring is different and a given MPPT controller could have different efficiencies depenting on the input voltage or amps.
For 2x12V panels for 12V charging could use a PWM controller for parallel and a MPPT controller for serial which involves wiring and controller differences. It also involves temperature differences and could favor either one. With morning temperatues above or below 77F (STC) as the panel output can favor one or the other. If the same MPPT controller is used for serial vs parallel then likely the same except for wiring and efficiency.
Just my 2 cents. I donโt recall seeing in testing on this subject.
โMar-15-2022 05:47 PM
SJ-Chris wrote:
That is a good question. Strangely, I didn't even think about connecting them in series. I connected them in parallel. I can appreciate how in series they would collectively get to say 14v+ earlier in the day and stay at 14v+ later in the evening. That would generate a little extra charging. Does anyone have any real life data on how much/little gain this ends up being in the real world? Would be interesting to know. Since all the panels are connected on the roof it wouldn't be terribly hard to re-wire them in series.
I guess the gain comes from the time between when the individual panels are producing ~5v to the time they are producing ~14v (and the reverse as the sun goes down). I'm curious....is this ~10 minutes in the morning and ~10 minutes in the evening? 20 minutes on each end?? Anyone know?
I suppose when I go boondocking next if I'm up before the sun I can keep an eye on my solar charge controller and measure the time...
PS: Solar is addictive.
Happy camping!
Chris
โMar-15-2022 12:18 PM
โMar-15-2022 08:48 AM